![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
上QQ阅读APP看书,第一时间看更新
本章复习提纲
1.2阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0062_0003.jpg?sign=1739553989-JENAxDYxg33qGdW75UQyCKK7dxcCJbag-0-e1d5be28dd698e57ae42dd885a228dff)
3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0062_0004.jpg?sign=1739553989-UPhdO9KD1DYOz9QrOBcSaEzhO2XapxKB-0-e052cf66e4110dc03e067135399f28f5)
n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0062_0005.jpg?sign=1739553989-eCY4d57Z1gN7xFMkhPCgaiXGpub5iIOX-0-733ee356c010e1744b12c394dd687c78)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0063_0001.jpg?sign=1739553989-EmwoFMEnrP0ECR4N6LCKEvehCkjo1iwO-0-8ae39dde1f14b0f815ec82a72a8697c4)
2.行列式按一行(列)展开公式:
|aij|nn=ai1Ai1+ai2Ai2+…+ainAin(1≤i≤n),
或
|aij|nn=a1jA1j+a2jA2j+…+anjAnj(1≤j≤n).
其中Aij=(-1)i+jMij为元素aij的代数余子式,Mij为aij的余子式,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0063_0002.jpg?sign=1739553989-amERlOixxtZN3ydWfwgvBy0hnWf78AC6-0-fde1495574a83c7da8ecdce362e95b28)
3.行列式性质
(1)行列式|A|与其转置行列式|AT|的值相等.
(2)用数k乘以行列式|A|的某一行(列)的各元素,等于k|A|.
(3)如果行列式中有一行(列)元素全为“0”,则行列式值等于零.
(4)行列式可按某一行(列)拆成两个或多个行列式之和.
(5)对换行列式的两行(列),行列式值反号.
(6)如果行列式中有两行(列)元素对应相等,则行列式值等于零.
(7)如果行列式中有两行(列)元素对应成比例,则行列式值等于零.
(8)将行列式某一行(列)的若干倍加到另一行(列)上去,行列式值不变.
4.行列式的计算
(1)用行列式定义.
(2)按一行(列)展开.
(3)用行列式性质将行列式化成上(下)三角形.
(4)用下列公式计算(*为任意数)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0064_0001.jpg?sign=1739553989-mybIMYEc1uSuy8ursbRKQ5Un4trGMIjM-0-73faa6482bffadf4b0e15da812f3d4f3)
阶行列式,i=1,2, …, s.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0064_0002.jpg?sign=1739553989-RJZgSJIZAxjvriByRx92bUhwb2aC872j-0-c759e833d72f2ebffd46e9005a18fa57)
行列式,i=1,2, …, s.
④ 范德蒙行列式.
⑤ 奇数阶反对称行列式值等于零.
(5)对于n阶行列式,先计算n=4或5阶行列式,找出算法或答案的规律,从而推出n阶行列式答案.
(6)解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0064_0003.jpg?sign=1739553989-0caS8i3pVoZHgyYpmq3opMBr1IAD8CfG-0-dcaca683a1a1c785716e334e1cfc0367)
5.克莱姆(Cramer)法则
(1)推论,方程个数等于未知量个数的齐次线性方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0065_0001.jpg?sign=1739553989-BYxK081iStUYLpB0UeTUFvHZBFuJTfo2-0-95b10db2670973d7344978fc728d8df4)
当其系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0065_0002.jpg?sign=1739553989-q8Ufj248REpM8QmUwQWlen3oUZXWy7Q5-0-57fc5e7ee9188989d8dabba5defd4ad6)
时,只有零解.
(2)推论逆否命题:方程个数等于未知量个数的齐次线性方程组,如果有非零解,则其系数行列式等于零.