
参考文献
[1]Qin B, Chen H Y, Liang H, et al. Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies [J]. Journal of the American Chemical Society, 2010, 132 (9): 2886-2888.
[2]Lee S J, Lee J E, Seo J, et al. Optical sensor based on nanomaterial for the selective detection of toxic metal ions [J]. Advanced Functional Materials, 2007, 17 (17): 3441-3446.
[3]Barboiu M, Cerneaux S, Lee A V D, et al. Ion-driven ATP pump by self-organizedhybrid membrane materials [J]. Journal of the American Chemical Society, 2004, 126 (11): 3545-3550.
[4]Sturm M B, Roday S, Schramm V L. Circular DNA and DNA/RNA hybrid molecules asscaffolds for ricin inhibitor design [J]. Journal of the American Chemical Society, 2007, 129: 5544-5550.
[5]Qiu X Q, Li L P, Tang C L, et al. Meta-semiconductor hybrid nanostructure Ag-Zn0.9Co0.1O: synthesis and room-temperature ferromagnetism [J]. Journal of the American Chemical Society, 2007, 129: 11908-11909.
[6]Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials [J]. Science, 2013, 340 (6139): 1420.
[7]Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 tansistors [J]. Nature Nanotechnology, 2011, 6: 147-150.
[8]Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2 [J]. ACS Nano, 2010, 4: 2695-2700.
[9]Ramakrishna M H S S, Gomathi A, Manna A K, et al. MoS2 and WS2 analogues of graphene [J]. Angewandte Chemie, 2010, 122: 4153-4156.
[10]Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2 [J]. Nano Letters, 2011, 11: 5111-5116.
[11]Kaner R B, Kouvetakis J, Warble C E, et al. Boron-carbon nitrogen materials of graphite-like structure [J]. Materials Research Bulletin, 1987, 22: 399-404.
[12]Posternak M, Baldereschi A, Freeman A J, et al. Prediction of electronic surface states in layered materials: graphite [J]. Physical Review Letters, 1984, 52: 863-866.
[13]田维亮.蛭石复合功能材料设计合成与性能研究[D].北京:北京化工大学,2017.
[14]王丽娟.蛭石结构改性、有机插层及微波膨胀研究[D].北京:中国地质大学(北京),2014.
[15]Sharma N, Ojha H, Bharadwaj A, et al. Preparation and catalytic applications of nanomaterials: a review [J]. Rsc Advances, 2015, 5 (66): 53381-53403.
[16]Santhosh C, Velmurugan V, Jacob G, et al. Role of nanomaterials in water treatment applications: a review [J]. Chemical Engineering Journal, 2016, 306: 1116-1137.
[17]秦纪华.几种纳米功能材料的制备及性能研究[D].广州:广州大学,2016.
[18]Kuang P Y. Anion-assisted one-pot synthesis of 1D magneticα-and β-MnO2 nanostructures for recyclable water treatment application [J]. New Joumal of Chemistry, 2015, 39 (4): 2497-2505.
[19]Lin C, Song Y, Cao L, et al. Effective photocatalysis of functional nanocompositesbased on carbon and TiO2 nanoparticles [J]. Nanoscale, 2013, 5 (11): 4986-4992.
[20]Sun M, Liu H, Liu Y, et al. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction [J]. Nanoscale, 2014, 7 (4): 1250-1269.
[21]Wang C, Xu L, Liang C, et al. Immunological responses triggered by photothermaltherapy with carbon nanotubes in combination with Anti-CTLA-4 therapy to inhibitcancer metastasis [J]. Advanced Materials, 2014, 26 (48): 8154-8162.
[22]Park C M, Chu K H, Heo J, et al. Environmental behavior of engineered nanomaterials in porous media: a review [J]. Journal of Hazardous Materials, 2016, 309: 133-150.
[23]Thorkelsson K, Bai P, Xu T. Self-assembly and applications of anisotropic nanomaterials: a review [J]. Nano Today, 2015, 10 (1): 48-66.
[24]赵紫军.(MCM-41)-La2O3纳米复合材料的制备、表征及光学性质研究[D].长春:长春理工大学,2010.
[25]李嘉,尹衍升,张金升,等.纳米材料的分类及基本结构效应[J].现代技术陶瓷,2003,(2):26-30.
[26]Huang H J, Wu Z, Zhi L H. Architectural design of bionic structure and biomimetic materials [J]. Advanced Materials Research, 2011, 314-316: 1991-1994.
[27]Shehzad K, Xu Y, Gao C, et al. Three-dimensional macro-structures of two-dimensional nanomaterials [J]. Chemical Society Reviews, 2016, 45 (20): 5541-5588.
[28]Chen S M, Gao H L, Sun X H, et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual- network interfacial design strategy [J]. Matter, 2019, 1 (2): 412-427.
[29]Lv H Q, Tang W X, Song Q H. Dynamic analysis of bionic vibration isolation platform based on viscoelastic materials [J]. Advanced Materials Research, 2014, 852: 467-471.
[30]Fattakhova-Rohlfing D, Zaleska A, Bein T. Three-dimensional titanium dioxide nanomaterials [J]. Chemical Reviews, 2014, 114 (19): 9487-9558.
[31]Yu X F, Mao L B, Ge J, et al. Three-dimensional melamine sponge loaded with Au/ceria nanowires for continous reduction of p-nitrophenol in a consecutive flow system [J]. Science Bulletin, 2016, 61: 700-705.
[32]D'elia N L, Gravina N, Ruso J M, et al. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: effect of surface reactivity and interfacial hydration [J]. Journal of Colloid and Interface Science, 2017, 494: 345-354.
[33]Sakai T, Tanaka Y, Nishizawa Y, et al. Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser [J]. Applied Physics A-Materials Science & Processing, 2010, 99 (1): 39-46.
[34]Mao L, Li Z P, Wu B, et al. Effects of quantum tunneling in metal nanogap on surface enhanced Raman scattering [J]. Applied Physics Letters, 2009, 94 (24): 243102.
[35]许荔,江晓禹.纳米复合材料特性分析及界面研究[J].材料科学与工程学报,2005,6(23):933-938.
[36]Backes C, Higgins T M, Kelly A, et al. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation [J]. Chemistry of Materials, 2017, 29 (1): 243-255.
[37]Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nature Chemistry, 2013, 5 (4): 263-275.
[38]Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7 (11): 699-712.
[39]Osada M, Sasaki T. Exfoliated oxide nanosheets: new solution to nanoelectronics [J]. Journal of Materials Chemistry, 2009, 19 (17): 2503-2511.
[40]Ray S S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing [J]. Progress in Polymer Science, 2003, 28 (11): 1539-1641.
[41]Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6 (3): 183-191.
[42]Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene [J]. Nature, 2012, 490 (7419): 192-200.
[43]Lembke D, Kis A. Breakdown of high-performance mono layer MoS2 transistors [J]. Acs Nano, 2013, 7 (4): 3730.
[44]Wang Z Y, Zhu W P, Qiu Y, et al. Biological and environmental interactions of emerging two-dimensional nanomaterials [J]. Chemical Society Reviews, 2016, 45 (6): 1750-1780.
[45]Oh J M, Biswick T T, Choy J H. Layered nanomaterials for green materials [J]. Journal of Materials Chemistry, 2009, 19 (17): 2553-2563.
[46]Choy J H, Kwon S J, Park G S. High-Tc superconductors in the two-dimensional limit [J]. Science, 1998, 280 (5369): 1589-1592.
[47]Kwon S J, Choy J H. A novel hybrid of Bi-based high-Tc superconductor and molecular complex [J]. Inorganic Chemistry, 2003, 42 (25): 8134-8136.
[48]Choy J H, Lee H C, Jung H, et al. Exfoliation and restacking route to anatase-layered titanate nanohybrid with enhanced photocatalytic activity [J]. Chemistry of Materials, 2002, 14 (6): 2486-2491.
[49]Paek S M, Jung H, Park M, et al. An inorganic nanohybrid with high specific surface area: TiO2-pillared MoS2 [J]. Chemistry of Materials, 2005, 17 (13): 3492-3498.
[50]Occelli M L, Rennard R J. Hydrotreating catalysts containing pillared clays [J]. Catalysis Today, 1988, 2 (2): 309-319.
[51]Sels B, Vos D D, Buntinx M, et al. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination [J]. Nature, 1999, 400: 855-857.
[52]Vaccari A. Preparation and catalytic properties of cationic and anionic clays [J]. Catalysis Today, 1998, 41 (1-3): 53-71.
[53]Roth W J, Gil B, Makowski W, et al. Layer like porous materials with hierarchical structure [J]. Chemical Society Reviews, 2016, 45 (12): 3400-3438.
[54]Atwood J L, Davies J E D, Mac Nichol D D, et al. Comprehensive supramolecular chemistry [M]. Oxford: Pergamon, 1996: 1-23.
[55]Auerbach S M, Carrado K A, Dutta P K. Handbook of layered materials [M]. New York: Marcel Dekker, 2004.
[56]Schwieger W, Machoke A G, Weissenberger T, et al. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity [J]. Chemical Society Reviews, 2016, 45 (12): 3353-3376.
[57]Bruce D W, O'hare D. Inorganic materials [M]. New York: Wiley, 1997: 172-254.
[58]MüLler-Warmuth W, SchöLlhorn R. Progress in intercalation research [M]. Dordrecht: Kluwer, 1994.
[59]Whittingham M S, Jacobson A J. Intercalation chemistry [M]. New York: Academic Press, 1982.
[60]Masters A F, Maschmeyer T. Zeolites-from curiosity to cornerstone [J]. Microporous and Mesoporous Materials, 2011, 142 (2-3): 423-438.
[61]Breck D W. Zeolite molecular sieves: structure, chemistry, and use [M]. New York: Wiley, 1973.
[62]Butler S Z, Hollen S M, Cao L Y, et al. Progress, challenges, and opportunities in twodimensional materials beyond graphene [J]. Acs Nano, 2013, 7 (4): 2898-2926.
[63]Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets [J]. Accounts of Chemical Research, 2014, 47 (4): 1067-1075.
[64]Wan J Y, Lacey S D, Dai J Q, et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications [J]. Chemical Society Reviews, 2016, 45 (24): 6742-6765.
[65]Zhang H. Ultrathin two-dimensional nanomaterials [J]. Acs Nano, 2015, 9 (10): 9451-9469.
[66]Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nature Photonics, 2010, 4 (9): 611-622.
[67]Ge J F, Liu Z L, Liu C H, et al. Superconductivity above 100K in single-layer FeSe films on doped SrTiO3 [J]. Nature Materials, 2015, 14 (3): 285-289.
[68]Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors [J]. Acs Nano, 2012, 6 (1): 74-80.
[69]Yin Z, Zhang X, Cai Y, et al. Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes [J]. Angewandte Chemie-International Edition, 2014, 53 (46): 12560-12565.
[70]Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics [J]. Nature Photonics, 2012, 6 (11): 749-758.
[71]Deng D H, Novoselov K S, Fu Q, et al. Catalysis with two-dimensional materials and their heterostructures [J]. Nature Nanotechnology, 2016, 11 (3): 218-230.
[72]Chen J Z, Wu X J, Yin L S, et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution [J]. Angewandte Chemie-International Edition, 2015, 54 (4): 1210-1214.
[73]Huang X, Zeng Z Y, Bao S Y, et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets [J]. Nature Communications, 2013, 4 (2): 1444-1452.
[74]Tan C L, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites [J]. Chemical Society Reviews, 2015, 44 (9): 2713-2731.
[75]Wu W Z, Wang L, Li Y L, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics [J]. Nature, 2014, 514 (7523): 470-474.
[76]Yin Z Y, Chen B, Bosman M, et al. Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting [J]. Small, 2014, 10 (17): 3537-3543.
[77]Zeng Z Y, Tan C L, Huang X, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction [J]. Energy & Environmental Science, 2014, 7 (2): 797-803.
[78]Zhou W J, Yin Z Y, Du Y P, et al. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities [J]. Small, 2013, 9 (1): 140-147.
[79]Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry [J]. Chemical Society Reviews, 2010, 39 (8): 3157-3180.
[80]Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nature Nanotechnology, 2010, 5 (8): 574-578.
[81]Cao X H, Tan C L, Zhang X, et al. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion [J]. Advanced Materials, 2016, 28 (29): 6167-6196.
[82]Huang X, Tan C L, Yin Z Y, et al. 25th Anniversary article: hybrid nanostructures based on two-dimensional nanomaterials [J]. Advanced Materials, 2014, 26 (14): 2185-2204.
[83]Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage [J]. Nature Materials, 2015, 14 (3): 271-279.
[84]Xu C H, Xu B H, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage [J]. Energy & Environmental Science, 2013, 6 (5): 1388-1414.
[85]Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science, 2008, 319 (5867): 1229-1232.
[86]Geim A K, Grigorieva I V. Van der Waals heterostructures [J]. Nature, 2013, 499 (7459): 419-425.
[87]Zhang X, Lai Z C, Liu Z D, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots [J]. Angewandte Chemie-International Edition, 2015, 54 (18): 5425-5428.
[88]Zhang X, Xie H M, Liu Z D, et al. Black phosphorus quantum dots [J]. Angewandte Chemie-International Edition, 2015, 54 (12): 3653-3657.
[89]Gong Y J, Lin J H, Wang X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers [J]. Nature Materials, 2014, 13 (12): 1135-1142.
[90]Zhao J, Deng Q M, Bachmatiuk A, et al. Free-standing single-atom-thick iron membranes suspended in graphene pores [J]. Science, 2014, 343 (6176): 1228-1232.
[91]Kang J, Tongay S, Li J B, et al. Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing [J]. Journal of Applied Physiology, 2013, 113 (14): 143703-143707.
[92]Yu Y J, Yang F Y, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 [J]. Nature Nanotechnology, 2015, 10 (3): 270-276.
[93]Bao W Z, Wan J Y, Han X G, et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation [J]. Nature Communications, 2014, 5 (1): 4224-4233.
[94]Tan C L, Zhao W, Chaturvedi A, et al. Preparation of single-layer MoS2xSe2 (1-x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase [J]. Small, 2016, 12 (14): 1866-1874.
[95]Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene [J]. Science, 2008, 320 (5873): 206-209.
[96]Zeng Z Y, Sun T, Zhu J X, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets [J]. Angewandte Chemie-International Edition, 2012, 51 (36): 9052-9056.
[97]Zeng Z Y, Yin Z Y, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication [J]. Angewandte Chemie-International Edition, 2011, 50 (47): 11093-11097.
[98]Bao W, Jing L, Velasco J, et al. Stacking-dependent band gap and quantum transport in trilayer graphene [J]. Nature Physics, 2011, 7 (12): 948-952.
[99]Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy [J]. Nature Physics, 2008, 4 (7): 532-535.
[100]Feng J, Qian X F, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel [J]. Nature Photonics, 2012, 6 (12): 865-871.
[101]Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105 (13): 136805.
[102]Dresselhaus M S, Dresselhaus G. Intercalation compounds of graphite [J]. Advances in Physics, 2002, 51 (1): 1-186.
[103]Benavente E, Santa Ana M A, Mendizabal F, et al. Intercalation chemistry of molybdenum disulfide [J]. Coordination Chemistry Reviews, 2002, 224 (1-2): 87-109.
[104]Friend R H, Yoffe A D. Electronic properties of intercalation complexes of the transition metal dichalcogenides [J]. Advances in Physics, 1987, 36 (1): 1-94.
[105]Lévy F. Intercalated layered materials [M]. Dordrecht: D Reldel Publ Company, 1979.
[106]Solin S A. The nature and structural properties of graphite intercalation compounds [J]. Advances in Chemical Physics, 1982, 49: 455-532.
[107]Wang H T, Lu Z Y, Xu S C, et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (49): 19701-19706.
[108]Whittingham M S. Chemistry of intercalation compounds: metal guests in chalcogenide hosts [J]. Progress in Solid State Chemistry, 1978, 12 (1): 41-99.
[109]Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries [J]. Advanced Materials, 1998, 10 (10): 725-763.
[110]Kappera R, Voiry D, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors [J]. Nature Materials, 2014, 13 (12): 1128-1134.
[111]Bointon T H, Khrapach I, Yakimova R, et al. Approaching magnetic ordering in graphene materials by FeCl3 intercalation [J]. Nano Letters, 2014, 14 (4): 1751-1755.
[112]Morosan E, Zandbergen H W, Li L, et al. Sharp switching of the magnetization in Fe1/4TaS2 [J]. Physical Review B, 2007, 75 (10): 4401-4408.
[113]Lin D C, Liu Y Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes [J]. Nature Nanotechnology, 2016, 11 (7): 626-632.
[114]Voiry D, Fullon R, Yang J E, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen [J]. Nature Materials, 2016, 15 (9): 1003-1009.
[115]Wan C L, Gu X K, Dang F, et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2 [J]. Nature Materials, 2015, 14 (6): 622-627.
[116]Wan J Y, Bao W Z, Liu Y, et al. In situ investigations of Li-MoS2 with planar batteries [J]. Advanced Energy Materials, 2015, 5 (5): 1401742-1401749.