![欧阳光中《数学分析》(上册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/599/27032599/b_27032599.jpg)
第7章 微分学基本定理及应用
1.函数f(t),g(t)在[a,b]上可微,且g'(t)≠0,,证明:必存在c∈[a,b],使得
成立.[中国科技大学研]
证明:由g'(x)≠0知g(b)≠g(a).
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image520.jpg?sign=1739278816-hlWWMlh1TENhezk64gnj092gfE33gODy-0-d5a4712c5fa7007254b7e445340cb86e)
F(x)在[a,b]上连续,在(a,b)内可导.由lagrange中值定理,使
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image523.jpg?sign=1739278816-KDuhYVyWfMuCPGLsFlL18nktORyrm37y-0-7cf2176eea75f942edd4f899f0ab5e60)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image524.jpg?sign=1739278816-VtxtJaY4IHh9WdN6bFLC8aS1tWS6tjiC-0-12ee48b751119885d04fa8d8b3e9982f)
g'(c)≠0即有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image525.jpg?sign=1739278816-QFtzunXU7kuSU9CcU2zS5jyLQP5uZ0SY-0-f13ceeebc429869a9803e495197d3a70)
2.设f(x)在[a,b]上连续,在(a,b)内有二阶导数,试证:存在c∈(a,b),使
[南开大学研]
证明:令 ①
由拉格朗日中值定理有
②
其中
另一方面,由①式
③
将③式代入②,即得证.
3.(1)设f(x)在(0,+∞)内二次可微,分别为
内的上确界,证明:
(2)设f"(x)在(0,+∞)上有界,且证明:
[北京大学,哈尔滨电工学院研]
证明:(1)由泰勒公式有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image540.jpg?sign=1739278816-lmguAWvV6hUHgWOKqnYovgtjsIcncGii-0-98d28018a45c6101ed7558a39222c74c)
解得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image542.jpg?sign=1739278816-tWlebh8J5yjrEWA1WJM2igjaRzHaBi2Q-0-856946925fd0fee4e1d037db851f23b5)
若取则
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image544.jpg?sign=1739278816-yogweYU1r7nYD2lpoiB0Swgaz6zamynD-0-b392c2488ff2e588547b6e40b824f7e9)
再由x的任意性,有
①
(2)设因
故对
当
时,
②
由上面(1)知,在上由①,②有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image552.jpg?sign=1739278816-XJ8zE0Roo9htuuhU3v2G7D0jEgcbgcOz-0-b7f80ade38bafe42db3af93971a6d16f)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image553.jpg?sign=1739278816-bvq1uJLQmgaRte0au4W1dfEJqNctTPgg-0-819a8a1c1e5ceca49cb0476d32205c5e)
类似可证在上有
,
4.用微分中值定理证明:
当s>0时,[武汉理工大学研]
证明:令则
分别在上对f(x)应用拉格朗日中值定理,有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image561.jpg?sign=1739278816-4SBEUrEfGVyR8pvbhXramchIV6OWqmz9-0-f2802b7293322d552520a3601fb7abd7)
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image562.jpg?sign=1739278816-utzB6AvrzOQud7qVDHnAXwSezlP32zJq-0-f68c6439983989f49a70aec363377af1)
所以
即
是严格单调递增函数.
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image566.jpg?sign=1739278816-fSMvai2LFfzdPIBDLnQ4sXxxzVix2OwF-0-770f45a3f4a406cc5c5a99afc46c7539)
代入上面n+1个式子得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image568.jpg?sign=1739278816-pe7iDM2KbSjhLvC9wz3zcmq5MZ8KZxFo-0-50f9dbed52c4a305ea684d11cb06a969)
将上面前n+1个式子的左边相加得
①
再将上面前n个式子右边相加得
②
由①,②即证.
5.设f(x)在(-∞,+∞)上具有二阶导数,且又存在一点
使
试证明:方程
在
上有且只有两个实根.[上海交通大学、浙江大学研]
证明:由于f(x)在(-∞,∞)上有二阶导数,所以在(-∞,+∞)上连续.
由于,因此由保号性必存在c>0,使当x>c时,
①
再在[c,x]上运用拉格朗日中值定理,可得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image580.jpg?sign=1739278816-y9lNBXqqBu8vjBnSyCNpkUHWZ43oOuUs-0-7223ad182f592b23fb79c5beb881c052)
由①式,
当x→+∞,上式右端趋于+∞,因为f(+∞)>0.又因此方程在
内至少有一个实根.
同理由类似可证方程f(x)=0在
内至少有一个实根,从而方程f(x)=0在(-∞,+∞)内至少有两个实根.
再证方程f(x)=0在(-∞,+∞)内实根个数不可能超过两个,用反证法.
若方程f(x)=0有三个(或以上)实根设为.在
上应用罗尔定理有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image588.jpg?sign=1739278816-AbagDMnCYSbzUiQl5UhwGn7vTW8C7rps-0-74cf8207d9e57feac9b2258fda0030dd)
在上再用罗尔定理有
,这与
的假设矛盾,故得证.
6.证明:当x≥0时,存在θ(x)∈(0,1),使得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image592.jpg?sign=1739278816-ZHy9YDlF3vWbg41oT0jD2dx0j0vIoQmf-0-371f4d4c577c08f0a7eed423be7fb460)
并求和
[中山大学2006研]
解:由于,则由Lagrange中值定理知当x≥0时,存在θ(x)∈(0,1),使得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image596.jpg?sign=1739278816-iQRbUwlz1WS67I3NA8C5gNh921l2u35C-0-afe37f4a31e9ff0cfaa93efe7d9ab2c7)
由这个等式可得。故有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image598.jpg?sign=1739278816-MQB0OuRPwKSiHxgL2OYqDuqcrmuayuws-0-6d948eb9b274bdd9de3327b787c7a687)
7.设函数f在[a,b]上是可微函数,且值域仍在[a,b]内。若,设
为[a,b]内任意一点,定义数列
为
,证明数列
收敛于[a,b]内某一点d,且
.[南京理工大学2006研]
证明:由中值定理知,从而由Cauchy收敛定理易知
收敛于[a,b]内某一点d。于是
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image607.jpg?sign=1739278816-L0vyt5J7vUt37RTmwnB1R1fbDotThOCj-0-0efb2419a25d80bfe701b8d4856df495)
又由三角不等式知,所以
,从而可
.
8.设函数f在(0,1]上连续,在(0,1]上可导且存在正常数α∈(0,1),使得存在。证明:f在(0,1]上一致连续。[北京师范大学研]
证明:因为存在,所以
,故对任意的ε>0,存在δ>0,当0<x<δ时,有
。从而当
时,由Cauchy中值定理知
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image616.jpg?sign=1739278816-srUV3YBu2icuRa7W2U3TZeo7lZ7EUjSk-0-c8be34db7ea705fd0d6d02d12a374082)
故由Cauchy收敛准则知存在,并定义
,则f在[0,1]上连续,所以f在[0,1]上一致连续,故f在(0,1]上一致连续。
9.求.[华东师范大学研]
解:由等价无穷小量和L’Hospital法则知
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image620.jpg?sign=1739278816-ET9VAoi4J3OUFhwtDy9NHrMj7t4f3hNe-0-4a2bab955d49c40c6246d7f10a0589bd)
故有
10.设函数f(x)在区问(0,+∞)内有二阶导函数,,并且当x∈(0,+∞)时,有
。证明:
.[北京交通大学研]
证明:要证明,即要证明对任意的ε>0,存在A>0,当x>A时有
。利用Taylor公式,对任意的h>0,有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image627.jpg?sign=1739278816-fNwGZqcWHGb3hssGQfSqchemrCtrN342-0-6354366eb3f833a6056446754d14c26c)
即,从而
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image629.jpg?sign=1739278816-sw2F0KKrgmQhB2CCFjRQKtav9eVjJepm-0-a314338c3978100c988d98d1ca9a4cc7)
对任意的ε>0,首先可取h>0充分小,使得h<ε,然后将h固定。因为,所以存在A>0,当x>A时,有
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image631.jpg?sign=1739278816-rBv9ooNQ2ZgJFxPc465BpbwIMD4ecPdw-0-f3b7cf937668c711fd37e76bc784888b)
从而
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image632.jpg?sign=1739278816-fuFFd0Ke7yzvOIWUX1DODljELpkdMrOE-0-ac6208bb837c74310e871f1d4377a00b)
11.将在x=0展开成Taylor级数。[大连理工大学2006研]
证明:因为
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image634.jpg?sign=1739278816-4ote8tB85j2LNebiUA7YMXwoNlg1RGa9-0-13456ff08e66829b9d223cdfdec0d4b7)
所以,n=1,2,…,根据Taylor展开式可得
![](https://epubservercos.yuewen.com/217590/15436378304486406/epubprivate/OEBPS/Images/image636.jpg?sign=1739278816-raKoMdCHaussnEhOGlxKHzJPfFtkoBE0-0-c2495f8511c7a6f1cc7db477446a16ad)