![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739256455-RB2fw6qAl6knAufZA7qJh67M4FXfY6as-0-2527264ab9b27818c1773de9877174b8)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739256455-izWxfb4YBB3qV9lQphJ1SLiaxS06MQzU-0-d833989d29442a990cae438bb735c90e)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739256455-cDXR9xZ8dvcnPCgio0o2el1FnGpeHFrz-0-0eeae1575f08d30abee779e8200e9c67)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739256455-Lpa64jUCYJUzlhjhFH6oomKVkPbhOczE-0-58ffbe79a4f87821c5ec1fa67974280d)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739256455-CIZfZOPsRFjxb1YFY4pi6P1QKU5cKakL-0-17e790ecd9b54b2bbc6d3e8a2e6b025e)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739256455-N42dGpuxwiBpwNhtELIEJY0JJHsMBzou-0-f78ddeea82eae3c321d89343a4de9bbd)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739256455-uOGZDhujInyykbVNsYFvDPQPBMPk3JA9-0-26921d9a07554f7d6e2aa2c454669758)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739256455-ryXiNBYDlNm2A5SqgTgRV7ihMwrMFQks-0-cbb235828259c42e49d3f72db37a091d)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739256455-Q1OSVMDDursfGMK6wBsZT1QDgcZ3AaCa-0-b21264dd94aa3d607f6c1deb5f55a461)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739256455-v0ywKfsiJP0MmzbFi7V8Stow1hrxr3O2-0-931d059b06342e9d9d563d3f30edb4bd)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739256455-R7szG3GLnIutJTsLLzaoNAHxEHqTSjtf-0-1235b9f7cb40dfb5d4e39ecc5df7f487)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739256455-6qahxa9H5C0zeHwCa4O6ZHbx23sDt1H8-0-96f5a13124e5c6fa918f062a045c1e9b)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739256455-nnmrORJkPiXuliUoY9SsVgtMPhLknxyy-0-24d995143b30d431c48c96d2116e3355)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739256455-IU1K168Q7CfwBI0dlUBNcrViZ4QVyyxt-0-74ef60df8129724e743fbf9c777db81a)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739256455-0KUIGyftuKKkEE9EOuhIgQ5MVdnVjtvx-0-bb682086c5c25cd140409768d290ec36)