![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739513729-KUsEHvt5yNL6Q9DjlfLP2Rq35xd1LHxo-0-416ed9a1607a5108a60d8168b35163e4)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739513729-PasePnbEknk7LeFW66soLc78TC1l3ATs-0-21826a61e255c5aa4142cb3d3773b63c)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739513729-OEYHxrS9GGznAbKtbruFebiVcyEYcKYk-0-e5a7df153d7e36494e88b12ff3cc9421)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739513729-qdIxJM6wtAb4N1gkuSolHZufG5lrtrsG-0-3c28910a466fdd3ab2f6105f37724ce7)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739513729-l8WXB8s1pPPJnxBj2HGTbnAoqR12ZLrw-0-cd03d55ea7c0f8694ee6008cdf485a99)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739513729-SNwHKbCFhJReioIFttqNqUIpyu5AaZIQ-0-25781477768a1299d4b11b3093753aa3)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739513729-539f8iGqpMj6j5xrVJBMSk4Lc4QJR8EI-0-a6501be6b91fd1629114a64cbc8b7cbb)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739513729-hM2pIYjPQAwOViEyYi4WDxP2HmpAV4sL-0-c0ba4e58ab293b7d8354521834136950)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739513729-17r7LradDKPRfKb21HOhqW5Hj7eijKPQ-0-cd45f8873aab0f07e7501e991b0f38a8)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739513729-4248Ae3cVXkpDA7aJjYIv2Y1pKOH6CRB-0-9b05799542aacaad381bbc6951e3f7ea)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739513729-aEAIOSny6RbdYXTZQ7u5ZIovHd5IglKP-0-fb470248cf8d22a4f730180156ed6741)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739513729-jtdlt6zUfFZLo6eJc7aeq77VLguC388a-0-acba2c47cf998dd0f61dc3e69d0cfff3)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739513729-T91YMI1jv2MEmHGgex53fLyP0ddiSWPN-0-6e9aa976fae8740524e835cee236de87)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739513729-ULxwoRwTX2TpSwyC8rdWavomEPZi9rWJ-0-ce23fc03dddbd4a036695ad304ccab3e)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739513729-lkpFVimQUQUljuN7BWs6YjAwYFdg76V5-0-6609cadc55b5b5c96ba4bf689e3d0ab5)