![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.1 n阶行列式定义
导学提纲
1.何谓2阶行列式?怎么计算2阶行列式的值?
2.二元一次方程组解的公式?
3.何谓3阶行列式?怎么计算3阶行列式的值?
4.三元一次方程组解的公式?
5.何谓元素aij的余子式M ij?何谓aij的代数余子式A ij?
6.何谓n阶行列式?
为便于记忆二元一次方程组解的公式,引入
定义1.1.1 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739360302-94z9M45wD2uJ7VTKzSdBKX5UnSjvmVcy-0-9cb4111552c85554c6ad618d16a9928a)
称为2阶行列式,它表示代数和a11a22-a12a21,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739360302-xByNqVrtcckQWrFhVT1R2ZBTEMLj4i0Y-0-a5ff6083bc82383f9a7d6075af4ac939)
2阶行列式中,横排称为行,竖排称为列.位于第i行第j列的元素ai j称为(i, j)元(i, j=1,2).a11, a22称为主对角线上的元素;a12, a21称为次对角线上的元素.2阶行列式的算法是:主对角线上的两个元素的乘积减去次对角线上两个元素的乘积.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0003.jpg?sign=1739360302-0sE0C5rYtdgQFWPaxRMTwiTIOyLfn8FS-0-cee6564e6a35ed42e411020113139881)
定理1.1.1 二元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739360302-z91RprJskWDhFDAwvUjejZzFDPngpT9U-0-0cd7f4deb3680e7e1a2affa05307cd3d)
当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0005.jpg?sign=1739360302-RZhj3WVS58AMNdLdhmOS7JZfyzLj0EWT-0-50b1c4f572fadc2d2d341f8455447340)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0006.jpg?sign=1739360302-1cbUJooBPhkK0UGQ1CLYoH0YIfWgUgHk-0-144591e2389c3adf98c7f3b243cf777e)
证 ①×a22-②×a12得
(a11a22-a12a21)x1=b1a22-b2a12,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0001.jpg?sign=1739360302-7cCor843DCTMJGFkV3YwKZduneJeXmlO-0-03abbe6252f46c59b08769b7f9815b05)
②×a11-①×a21得
(a11a22-a12a21)x2=a11b2-a21b1,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0002.jpg?sign=1739360302-Bb1KB2ddkZmNModOn7W4C9eF8poDWYp1-0-d878571a48b4baadf54722e73e196bab)
例1.1.1 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0003.jpg?sign=1739360302-A7fCztxi6wV0KaBWT4rgU7fUy7cFcun7-0-07902884dcb633dd11cffae58d221353)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0004.jpg?sign=1739360302-3oLSbdp1aFlRWtBJlv8RSA1qhVkg6qUG-0-1ef71a3d4882e4df1f9598f4b0ebc8f3)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0005.jpg?sign=1739360302-3FIpxRPmNRtf4WXUrSfyXGksL1nPP1QL-0-c2febe5108ea8a7532842670323c2248)
(读者可将解代入方程组验算之).
用加减消元法解三元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0001.jpg?sign=1739360302-qSmOTKNH1X8KhIq3y2ryGubkHzH7UwnY-0-a604ac736e8539037d4066748fdf3273)
得
定理1.1.2 三元一次方程组(1),当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0002.jpg?sign=1739360302-ySGbccOBDVuVUNb9nNjyo9YUuZPjP7qv-0-9ff98b9658a4b18d9e99ba676c95b129)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0003.jpg?sign=1739360302-Bq7v8LmIUTfJtp4HA552As0SGN851V2p-0-1d7daa0af7dfcaea9ed34632097acd43)
为此引入
定义1.1.2 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0004.jpg?sign=1739360302-UAbEsuO1ccEPdMpvVXGRstNGU4pOG1pu-0-cb33d4ff1af0981d8c40742e518c38ac)
称为3阶行列式.它表示代数和
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31.
即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0001.jpg?sign=1739360302-QClulsddhkAOWGBxmbSXXk4nBkOE76ao-0-349a0c884d4fd0b32eaa9d8d79f51560)
3阶行列式等于3! =6项代数和.每一项都是取自不同行不同列的3个元素相乘,主对角线方向三项前面带正号,次对角线方向三项前面带负号.3阶行列式算法如下图:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0002.jpg?sign=1739360302-V8ZZRwsyi2ui6TnVyvMmeYPJU1zHQSGz-0-2aa4a4c4cab572cbb5b4c2150979b043)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0003.jpg?sign=1739360302-dkys2Li6Hsd08BanYr1YMvTJfBQKl4Ke-0-a164183a8aeae3b9cf7311f2d55df019)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0001.jpg?sign=1739360302-6utwgu4UFtTjOTi7mVYvtRBD0EJuyGsH-0-7807097d472f950144b88c7f5e21ce2c)
例1.1.2 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0002.jpg?sign=1739360302-0i8DFhHrdZ7cSqVSZT3DiKZnwGWWHHCB-0-6a6c0310f46c0fbc335b60013124d956)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0003.jpg?sign=1739360302-P2LWZZ5Q03oWrlpJapcdBD8P2VQdxTHv-0-09fd2310aab254c0739e9df1b2678ac1)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0004.jpg?sign=1739360302-mHouFINytsHuk8wdcMdmUWKQubbdy38w-0-10886c7a6dc3cc79b2b889827b8df227)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739360302-tjW9Nd0k42ELat0UHz6eZEkQZ8HJQFby-0-2d222bc8f353733c225b328d0701a67d)
(读者可以将解代入方程组验算之).
例1.1.3 解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739360302-8PM53TYlCkVaGx9wlQ98oE0SBQDDPEPt-0-06e5e6c68a74ff9fcfef0fdbdc1b5a06)
解 (1)左边=(λ-3)(λ+1)-5=λ2-2λ-8=(λ+2)(λ-4)=0,
所以方程有两个根:λ1=-2, λ2=4.
(2)左边=(λ+1)(λ-3)(λ-2)-(-1)×4×(λ-2)=(λ-2)(λ2-2λ+1)=(λ-2)(λ-1)2=0,
所以方程有根:λ1=2, λ2=1(2重).
定理1.1.1和定理1.1.2可以推广到n个方程n个未知量的一次方程组情形(见 §1.4).为此需要引入n阶行列式定义,先分析3阶行列式与2阶行列式的关系.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0003.jpg?sign=1739360302-4SNu2WKjH3GY3O3ZDbDovSYHFZprJhu9-0-ff808cf5ea340f6e141a2514cc21e847)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739360302-gZLBjsPZcEkB3IAZkBGZ80pgZ0nXYhnd-0-bbbe8576786b580c233938c047aadc81)
定义1.1.3 行列式中元素aij的余子式Mij是指去掉aij所在第i行和第j列元素后余下的行列式.aij的代数余子式Aij=(-1)i+jMij.
例如,3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739360302-f71e2D0OJ8APUTRRVXvsq5rqKhHJMlwa-0-31fd85644b585d5f09e725ef563de104)
中,元素
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0003.jpg?sign=1739360302-EkwPnsLMWum00Fdz9MJjvglQR9lEfApf-0-0dfe79c4b3b6bbff0b40eba9614ede46)
所以3阶行列式还可以定义为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0004.jpg?sign=1739360302-c0CdZ9NSPwIveF3gRxeDop91g5SBLH39-0-62fb5528b44baa6d9b1b5c5c3418ec86)
即3阶行列式的值等于第1行每个元素与其代数余子式乘积之和.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739360302-ZorREPw64KPDNQQmijPdNbH5sOV3WZKC-0-15d7452684cff8722ddc054ec25d87cc)
现在我们归纳出n阶行列式定义.
定义1.1.4 n=2阶行列式已经定义(定义1.1.1),假设n-1阶行列式已经定义,那么n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0001.jpg?sign=1739360302-yY7mscy6DgS4mOnOGDAWYcJHvwR1Vq8e-0-5498cd3533963a9d502fb923b2ba9364)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0002.jpg?sign=1739360302-kkhulvGM7wfamIK4IH73embyrzFmOtVo-0-fa92bdf7d67652184493e17b1685105e)
或简单记作|aij|nn.
例1.1.4 按定义计算下列行列式.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0003.jpg?sign=1739360302-ZSlUlD50o5twwPlTssjDi93SW4axECgd-0-531d735695c98c2402bd882164e42b34)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0001.jpg?sign=1739360302-P75uHeX5rxL5qchkTdY9kENvpNcoKa4H-0-13715fb1ed1ac040d660379238c56b50)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0002.jpg?sign=1739360302-Dw9WNIk6co6P7pkwhFvXvUyrnDSq1T0i-0-c25a9cd911513fdee92b0a7b7a018fcb)
一般地,n阶下三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0003.jpg?sign=1739360302-4GfyKA8l944hBirfx4YgSsH3FAL61JJF-0-1c70e365d77d816b0497c719e5b84778)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739360302-TD2gcJjGWlvPmGTKaDv3NvxAn83vqbUQ-0-9313838efff354d5a4d471670ff702c5)
第(3)题答案说明4阶行列式中次对角线上4个元素的乘积前面带正号.
可见,对于n≥4阶行列式,2、3阶行列式的对角线算法已不适用!
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739360302-KGIsxmFD1kuTHoSPHgjuPYg4QDyG8S4w-0-fd5ee8e200bb7a01ba20a86e43bee43d)
第(4)题可以作为公式用.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739360302-RGCZyqn2G59X7ofBVzEY8nA0VZm0lQqP-0-4948abadf7d238f9defd2eb092d655df)
一般地,设|A|=|aij|r, |B|=|bij|s,那么有公式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739360302-BiOPWmrcGQ5MyT43ccaDmfNe2wp4tEYH-0-555271dbc50101835c6469fff4f91833)
习题1.1
1.填空题:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739360302-70IppaKo7iSkiFBNukcom1SeLGySB5pN-0-eaa7857bdc9a83f68ed86846b918949c)
2.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739360302-uVWL7Em3owUH9OBOCTZ4nQ1HNMpboMVP-0-5b950d03d3d1538f9d642025a43260c9)
3.解方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739360302-SWQcuz2zdvxhcrUiY0vcz97P3jC27YnN-0-0db5ad1e15aa5a3a4d6316ec6671836d)
4.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739360302-os0B3eb24WSC5gWM6yIug9nPE8fHTwdS-0-d333f8cd59e026b9ed3b8aeb8fd698c3)
5.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739360302-ggnp23RKFsRmYnh6cSNs23Sb1eM74DHN-0-1e43c5ffe18c070c43e265aad70ada61)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739360302-5mPgqMZGLIKhN7Fvxdq5Mv3ZmIg6cJ7O-0-73409bb09cb7215c9bd2f32bc8c85a8c)