![经济数学—概率论与数理统计学习辅导(高等学校经济管理数学基础辅导系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/400/23912400/b_23912400.jpg)
三、习题解答
(A)
1.已知随机变量X服从0-1分布,并且P{X≤0}=0.2,求X的概率分布.
解 X只取0与1两个值,P{X=0}=P{X≤0}-P{X<0}=0.2, P{X=1}=1-P{X=0}=0.8.
2.一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X的概率分布.
解 X可以取0,1,2三个值.由古典概型概率公式可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0003.jpg?sign=1738982566-51NqxP7weCUzZsHetEKzjS2HPOyeOFne-0-7e82a30e1118feb39592fc670fffcd03)
依次计算得X的概率分布如下表所示:
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0004.jpg?sign=1738982566-dznWn4n8e8rPceBccCV4U7UJMiXEqeHV-0-d5abb95fb2e91020c7da97e368a9e4f9)
3.上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X件,求随机变量X的概率分布.
解 X的取值仍是0,1,2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0005.jpg?sign=1738982566-IlNUEAZ2YW2KeiVigHzBW6oZG5nm5FOh-0-4e699ae276ade1be794d4263587e4b54)
4.第2题中若改为重复抽取,每次一件,直到取到优质品为止,求抽取次数X的概率分布.
解 X可以取1,2, …可列个值.且事件{X=m}表示抽取m次前m-1次均未取到优质品且第m次取到优质品,其概率为.因此X的概率分布为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0007.jpg?sign=1738982566-rWDWAjx2dyqnfQ0S1DviQYZSBFNFVNiv-0-562b6cb2fb8478611675cce9eaced018)
5.盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布:
(1)抽取次数X;
(2)取到的旧球个数Y.
解 (1)X可以取1,2,3,4各值,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0001.jpg?sign=1738982566-pAYxE2uEUo0KsWW8VAKUeARoXMtwyBdD-0-e4d381e0b2582ec0cc28f80c87ef312c)
(2)Y可以取0,1,2,3各值.
P{Y=0}=P{X=1}=0.75,
P{Y=1}=P{X=2}≈0.2045,
P{Y=2}=P{X=3}≈0.0409,
P{Y=3}=P{X=4}≈0.0045.
6.上题盒中球的组成不变,若一次取出3个,求取到的新球数目X的概率分布.
解 X可以取0,1,2,3各值,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0002.jpg?sign=1738982566-I3CXq2fhUkLmax7B2Hgb0WsMEMIFVGUe-0-af503917ad18b0e2a48d3e73264df35d)
7.将3人随机地分配到5个房间去住,求第一个房间中人数的概率分布和分布函数.
解 用X表示第一个房间中的人数,则其可能的取值为0,1,2,3.分别算得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0003.jpg?sign=1738982566-kcGSovrxCEe9CxjvzkTLUt8oDVzyPvwd-0-8d346f14ecf7bf346193bca1c8af8ea0)
故X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0001.jpg?sign=1738982566-AkEdplYytTJgoFAgWYxHiaus0feoDXxk-0-11a2e561c171b6a44b174a2196fabec4)
8.袋中装有n个球,分别编号为1,2, …, n,从中任取k(k≤n)个,求取出的k个球最大编号的概率分布.
解 用X表示k个球的最大编号,则X可能的取值为k, k+1, …, n.考虑随机事件{X=l},总样本点数为,若k个球的最大编号是l,编号是l的球一定被取出,剩下k-1个球从编号为1,2, …, l-1的l-1个球中取,共
种取法,所以随机事件{X=l}所包含的样本点数为
,由古典概型概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0005.jpg?sign=1738982566-DMn73ucBuMJjorJtTQ7XyOfy9cfqijVN-0-c85494c3ad617acd4b066bbd997e5248)
9.已知P{X=n}=pn, n=2,4,6, …,求p的值.
解 由题意可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0006.jpg?sign=1738982566-IRtDCeyjyRcnTqGcWr9Gj6KqiYNf3qyI-0-57f787f941fbcc4ef753f440ff333281)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0007.jpg?sign=1738982566-ruFWYE4yzTd404ER19z6wRWWueHJHvZP-0-fa1858ef0b87ac0ad620dc2729391638)
10.已知P{X=n}=cn, n=1,2, …,100,求c的值.
解 由题意可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0008.jpg?sign=1738982566-Z7bTHVkH9XxdcL4j03JUOLcTgp11NjHg-0-5f6b9e0bdb4fb34d47d9183311f6e178)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0009.jpg?sign=1738982566-Qspd7AhMATAWqCYmNYSK5s9pNG0NkV6k-0-f471b1601311cc20d8e27589a3b40ec8)
11.已知 , …,且λ>0,求常数c.
解 由题意知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0011.jpg?sign=1738982566-v6I8jjVXwI8NoSkdFSkBBMi1HNq7huE7-0-f38eba156d37888ee34d3af4d1117a3a)
由于
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0012.jpg?sign=1738982566-EZDreKYO9ZjVUwaVs5XleTtpjtrNsTuK-0-284a969eb4c3e60d44d1e4fe9e545c14)
所以有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0013.jpg?sign=1738982566-jnGkfbELsbheTLuymiPNrW060MHWcuiJ-0-6126f9f15b7952ef15ad7487022dad43)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0014.jpg?sign=1738982566-5iX3Dz1pXKAY0rZYyQKwKXw5QTSDJ1yF-0-41fd3ea7eb60ae1e80dbfb0af2e932cd)
12.某人任意抛硬币10次,写出出现正面次数的概率分布,并求出现正面次数不小于3及不超过8的概率.
解 用X表示抛10次出现正面的次数,则X可能的取值为0,1,2, …,10.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0001.jpg?sign=1738982566-sUGsVOvHPS1VRgYbjLBh5pox53mEl21r-0-5297d3c9dbb78f541c2d26a1125d8947)
13.甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:
(1)二人投篮总次数Z的概率分布;
(2)甲投篮次数X的概率分布;
(3)乙投篮次数Y的概率分布.
解 设事件Ai(i=1,3,5, …)表示“在第i次投篮中甲投中”, Bj(j=2,4,6, …)表示“在第j次投篮中乙投中”,且A1, B2, A3, B4, …相互独立.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0002.jpg?sign=1738982566-8kVyZNS5nMhLnDYdqcj82DEtbW1F3CZT-0-d882637a56dc9fecfb421232a2333a49)
14.一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X的概率分布(不计其他因素停车).
解 X可以取0,1,2,3,4,分别得到
P{X=0}=0.4, P{X=1}=0.6 × 0.4=0.24,
P{X=2}=0.6 2 × 0.4=0.144,
P{X=3}=0.6 3 × 0.4=0.0864,
P{X=4}=0.6 4=0.1296.
15.已知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0003.jpg?sign=1738982566-A6e8B3phtP328Uh7esU3XvKS7xDJKjHP-0-aea5fe1cc6a27c899065984d57ccbff5)
问f(x)是否为密度函数.若是,确定a的值;若不是,说明理由.
解 如果f(x)是密度函数,则f(x)≥0,因此a≥0,但是,当a≥0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0001.jpg?sign=1738982566-MlyOQev4YbDllnz05zr4X9farcREhHHM-0-8f01232c81a7bd5295b9bcd360f5f23d)
由于不等于1,因此f(x)不是密度函数.
16.某种电子元件的寿命X是随机变量,概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0003.jpg?sign=1738982566-JIILssqTn7jcapGziw2tp0YuAHFGP4BK-0-5c0fea05fce5a3e803de2c3661377f83)
3个这种元件串联在一个线路上,计算这3个元件使用了150h后仍能使线路正常工作的概率.
解 串联线路正常工作的充分必要条件是3个元件都能正常工作.而3个元件的寿命是3个相互独立同分布的随机变量,因此若用事件A表示“线路正常工作”,则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0004.jpg?sign=1738982566-faZP4tal7x8U0sRODyEV4RwntyF17vly-0-b5413ec9823a724695589b849aa02c82)
17.设随机变量X~f(x), f(x)=Ae-|x|.试确定系数A并计算P{|X|≤1}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0005.jpg?sign=1738982566-OHK5c0g7lb8q3VHZ6bzhik2TlUameqtd-0-11688611344ab593e09532cb98102932)
解得,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0007.jpg?sign=1738982566-og5MjcDvoHtTjBgs4rgBVpJY2CyqCl1j-0-c521f28c93db9d5d564c4dfabb6b101f)
18.设X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0008.jpg?sign=1738982566-sP3tlTtKrmGU0brz7Wa9MaiqlgtwxtFa-0-2453bf714e4ab1deaeb8c9f9a8151ab4)
(1)确定常数c;(2)计算; (3)写出分布函数.
解(1)解得
.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0011.jpg?sign=1738982566-Y3sPYm5c1lWzJBtWfn7DpXANtLbPGrJb-0-bc276afed54fcb036e8c2b08dd1a87dd)
(3)当x≤-1时,F(x)=0;当x≥1时,F(x)=1;当-1<x<1时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0001.jpg?sign=1738982566-jpnqiZSHaHm6dmC8Ao700rbGzqoZB9QD-0-ecd22383f67434b5863e1dd1e43e8142)
19.设X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0002.jpg?sign=1738982566-FuBiXX1L4DpG1QRfXBws8Rj46U7EFNkf-0-31975922041eb3b4def25c851ed6ad0d)
(1)确定常数c;(2)计算; (3)写出分布函数.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0004.jpg?sign=1738982566-Ixz7nuZiayPK8Je5Mq6txRbbPtG71xbL-0-e9234f217850a257fd69d3d8d70d6484)
故c=1π.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0005.jpg?sign=1738982566-4jtuuhL0IjJ6nv5yFstsRVFxDB6Vaydo-0-b0cc7977b0d9c7352e235d492fb7d1a9)
(3)当x≤-1时,F(x)=0;当x≥1时,F(x)=1;当-1<x<1时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0006.jpg?sign=1738982566-hYG5ZKpfOE5nH2TXBZUXNnXyS0WOSQrp-0-b290ca70d40486f3c222c09228b9dd54)
20.设连续型随机变量X的分布函数F(x)为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0007.jpg?sign=1738982566-BwW164NadEgESWJ7oPikdPa7ijb7ulVo-0-6e046ebe8ad9f680a17cee68e1f65b78)
(1)确定系数A; (2)计算P{0≤X≤0.25}; (3)求概率密度f(x).
解(1)连续型随机变量X的分布函数是连续函数,F(1)=F(1-0),则有A=1.
(2)P{0≤X≤0.25}=F(0.25)-F(0)=0.5.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0008.jpg?sign=1738982566-IC3UaICY2FR0fXCzOHDZCYfYr2g42G64-0-43f3b46c0e89d7e33618e82af80552f7)
21.随机变量X的分布函数F(x)为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0009.jpg?sign=1738982566-eqLAyubq7Q8dXRi1YCS63TbOu5zgzvOn-0-6e663ad1e4087b24781b7da6af9daf22)
试确定常数A的值并计算P{0≤X≤4}.
解 由F(2+0)=F(2),可得,故A=4,且
P{0≤X≤4}=P{0<X≤4}=F(4)-F(0)=0.75.
22.设X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0001.jpg?sign=1738982566-d0WN3UJYpb0EnYvVLEaBzh2U5XKR9WJX-0-b92d05066e5793a1ce392cd3443036d0)
(1)确定常数A; (2)计算P{|X|<2}; (3)求概率密度f(x).
解 (1)由F(0+0)=F(0),可得0=A-1,故A=1.
(2)P{|X|<2}=F(2)-F(-2)=1-e-4.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0002.jpg?sign=1738982566-9euIgGp6xfYJTElsHwaJhAmpPGYaWAdH-0-bb7e06dce7c9a72af451ac83c7621e90)
23.设X的分布函数为
F(x)=A+Barcta nx, -∞ <x<+∞.
(1)确定常数A, B; (2)计算P{|X|<1}; (3)求概率密度f(x).
解 (1) ,可得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0004.jpg?sign=1738982566-LxjFyebOI31Rq0zfT8g4sI7Ozwb2swtv-0-695108857c9f919adb898cb0e6217467)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0005.jpg?sign=1738982566-aIQIa17Wsttk3CpspKBGEtPefPKyO1Vj-0-2bc11626a93804894bc1c565707a8932)
24.设X的概率密度为
f(x)=Ae-|x|, -∞<x<+∞.
(1)确定常数A; (2)求分布函数f(x); (3)计算X落在(0,1)内的概率.
解 (1)由第17题,有.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0007.jpg?sign=1738982566-ICAhBb5EkQpylFTitgZwaduqNGaz8EXV-0-411377af5a6e3a8f015a11e4d123a6eb)
(3)当x<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0008.jpg?sign=1738982566-ZhNSagqnO8dv19dyjhJ7WXNEbh8LaJJz-0-a2719ddb255ad7b02554594c90e32a69)
当x≥0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0009.jpg?sign=1738982566-6q6gHfaR1kZ6744co1gjnhdNzErBEapB-0-2071af7b30674d84768fa4b2036dda0c)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0010.jpg?sign=1738982566-MRBQPSzDG7NB6locmZjmf0uB9U2isV27-0-4463eaa23b679376e1b3ad1044ddaf50)
25.随机变量 ,试确定A的值并求分布函数F(x).
解 ,因此
,所求分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0002.jpg?sign=1738982566-OMj1N96J45Iz425jFot2GgJ7VvbDkYvW-0-a891917b81d8e0a8460b600b2eea165c)
26.随机变量X~f(x),其中
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0003.jpg?sign=1738982566-r1ZFPH8kv9dEgnFQvADhcOmMZQH95ty1-0-cf6825a96885180bf8bdcb0da45bfc52)
试确定a的值并求分布函数F(x).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0004.jpg?sign=1738982566-1czlhzZb8eZtwyjeLXLlCgaaCYTNfttx-0-d75159517211ec00549955d167e258a2)
因此a=π.当0<x<π时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0005.jpg?sign=1738982566-HKvRYQER5C1idLMXE5KrJMc6Vza1c8h6-0-cd98ce85de5b0b86c3bda370995052f6)
27.随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0006.jpg?sign=1738982566-6uYaxmVtKXDHoq2dsaxWskBfEsJnVJ2B-0-cb987a6c5b6aae18ca2736fcd5517f70)
求X的概率密度,并计算
解 当x≤0时,X的概率密度为f(x)=0;当x>0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0008.jpg?sign=1738982566-Q8Vu0HeFnoFY2jzT1exQzfCQqwZ7RjtE-0-637a0ea7c1a3773622a8f4ad33570485)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0009.jpg?sign=1738982566-Mse2N2BSrXqrzV8ahr66Udx8c6uE3HYx-0-d9fe6f8932b82f19cb33e8e4034c9722)
28.某公共汽车站,每隔8分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客到达汽车站后候车时间不超过3分钟及至少5分钟的概率.
解 用X表示乘客到达汽车站后候车时间,则X~U(0,8).X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0010.jpg?sign=1738982566-X0QkHAHs9VsvJDnqvtKFpx871ql4TKWD-0-35fe5530bcfcdfe6eccc9effba3f150c)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0001.jpg?sign=1738982566-c54bkKiExxSajo3zeG7K0oCxnIV0dvkH-0-3c3fd7db4fa27bd74455fb086cdbb6fe)
29.设ξ~U(0,10),求方程x 2+ξx+1=0有实根的概率.
解 ξ的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0002.jpg?sign=1738982566-vPa5sjZeI4QKS43dnKNceLRpwJpqj2M1-0-25373c55cd512c504b7c50433ccdb4d6)
方程x2+ξx+1=0当ξ2-4≥0时有实根,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0003.jpg?sign=1738982566-yKjkHi4qyHBP0AqdrKQhEoYHVPO4q06K-0-dc2be1739007c6fad16c4a49ee331609)
30.一批产品中有15%的次品,逐个进行返样抽取检查,共抽取20个样品,问取出的20个样品中最可能有几个次品,并求相应的概率.
解 用X表示抽取20个样品中的次品的件数,由于(20+1)×0.15=3,则取出的20个样品中最可能有3个次品,且
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0004.jpg?sign=1738982566-46zcOMIagcaBr3Z3qr9SMw88FHCXDLur-0-e0d99bcf8176aa14a73dcef0b5308c68)
31.在1000件产品中含有15件次品,现从中任取6件产品,分别求其中恰含有2件次品和不含次品的概率.
解 用X表示抽取的6件产品中次品的件数,次品率为0.015,故X近似地服从二项分布B(6,0.015),
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0005.jpg?sign=1738982566-lHlPkfBUVahNkWAO5Uri81IN4ukb5YSF-0-93270be44e4660146a1506778e17810e)
32.电话交换台每分钟接到呼唤的次数服从泊松分布P(3),求一分钟内接到4次呼唤、不超过5次呼唤和至少3次呼唤的概率.
解 用X表示每分钟接到的呼唤次数,则X服从泊松分布P(3),即有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0006.jpg?sign=1738982566-0TFIswiVtQEVs288j7QFTwqjmw3XB4mE-0-734a339c53004556e19380bd6e3c0dfa)
查表得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0007.jpg?sign=1738982566-gpjbZP6j9wjvvgezSf4YFvCsVjypfll6-0-7ce465d2683dbc8b9d3dd0da8ea9ca79)
33.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有1个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.
解 设一页书上印刷错误为X,4页中没有错误的页数为Y,依题意有
P{X=1}=P{X=2},
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0008.jpg?sign=1738982566-gz8Lvl2vYYT0F1WxHbdwye8TFnWAC3pB-0-dbbd3c4735264dc62981a9d4f8afb7c6)
解得λ=2,即X服从λ=2的泊松分布.
每页上没有印刷错误的概述是
p=P{X=0}=e-2,
显然Y~B(4, e-2),故
P{Y=4}=p4=e-8.
34.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有1只老鼠的概率为有2只老鼠的概率的2倍,求粮仓内无鼠的概率.
解 设X为粮仓内老鼠数目,依题意有
P{X=1}=2P{X=2},
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0072_0001.jpg?sign=1738982566-VhmOPftwijvDvytQPDyS2lj9zWYq0tbJ-0-586b380c1825c0dcd2fef42c3fa62f11)
解得λ=1, P{X=0}=e-1.
35.上题中条件不变,求10个粮仓内有老鼠的粮仓不超过2个的概率.
解 接上题,设10个粮仓中有老鼠的粮仓的数目为Y,则Y~B(10, p),其中
p=P{X>0}=1-P{X=0}=1-e-1, q=e-1.
P{Y≤2}=P{Y=0}+P{Y=1}+P{Y=2}=e-8(36e-2-80e-1+45).
36.随机变量X服从参数为0.7的0-1分布,求X2, X2-2X的概率分布.
解 X2仍服从0-1分布,且
P{X2=0}=P{X=0}=0.3,
P{X2=1}=P{X=1}=0.7.
X2-2X的取值为-1与0,则
P{X2-2X=0}=P{X=0}=0.3,
P{X2-2X=-1}=1-P{X=0}=0.7.
37.设X的概率分布为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0072_0002.jpg?sign=1738982566-g36gxMJReGo7QNVnHTWiVoN0XxtR8ZHg-0-44af9a86886283b67e4b4a0927a8c9ba)
求3X+2和2X2-1的概率分布.
解 P{3X+2=-1}=P{X=-1}=0.1,
P{3X+2=2}=P{X=0}=0.2,
P{3X+2=5}=P{X=1}=0.3,
P{3X+2=17}=P{X=5}=0.4.
P{2X2-1=1}=P{X=-1}+P{X=1}=0.4,
P{2X2-1=-1}=P{X=0}=0.2,
P{2X2-1=49}=P{X=5}=0.4.
38.从含有3件次品的12件产品中任取3件,设其中次品数为X,求2X+1的概率分布.
解 X可能的取值为0,1,2,3,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0001.jpg?sign=1738982566-0WHYzCiEyKTtWjixPKvOG7Dijlh1oWr3-0-d9a1af66b1764822b86d8658a8575dcb)
39.已知 , Y=lgX,求Y的概率分布.
解 Y的取值为±1, ±2, …,则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0003.jpg?sign=1738982566-32OQuD8nxYxw6nFVzWi3btGiKZDu8mpc-0-9c15dd14a8f97111eb8da4ac85b7be0f)
40.X服从[a, b]上的均匀分布,Y=aX+b, (a≠0),求证Y也服从均匀分布.
证明 X的密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0004.jpg?sign=1738982566-ffkXUcqiadnHYxNHUZOKaYLBiLxTViRr-0-6193e86ea7782cf654a0536007e1c60b)
Y的密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0005.jpg?sign=1738982566-A6OXF3An1HVhg3VuXC2p8OmPENCyneTX-0-9d5b4720f2aaeac9020c9bf047387bc1)
当a>0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0006.jpg?sign=1738982566-aPapoSYpdzg1bLHvWTDelbD80X2byjer-0-f8df3f64074a33215aec2af97e215bce)
当a<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0007.jpg?sign=1738982566-NTvDmRJgCL2TkMnCRFzYV5DWVRHrMR01-0-0279c64a37c9febcd678c03ac262a1dd)
41.随机变量服从 上的均匀分布,Y=cosX,求Y的概率密度.
解 显然y=cosx在 上单调,在(0,1)上有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0010.jpg?sign=1738982566-ZeYHw3MuMu6WdGn9O9GBTilFqzjn3rhE-0-20e44ff8f2ac3c02f8a2250e5a8eaf24)
因此
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0011.jpg?sign=1738982566-Jxe5nBRHL0hCCuUoVCUNvfwdP2FjdNBE-0-f7f0ce3852c435bd76dfcf917bf407e0)
42.随机变量服从(0,1)上的均匀分布,Y=eX, Z=|lnX|,分别求随机变量Y与Z的概率密度fY(y)及fZ(z).
解 y=ex在(0,1)内单调,x=lny可导,且,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0002.jpg?sign=1738982566-21cC9NrCAjUFpBrDIxjtqcsowSPd1uaC-0-7dc4cc6bc47d3d6e27da1c55db32c79e)
在(0,1)内,lnx<0, |lnx|=-lnx单调,且 ,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0004.jpg?sign=1738982566-Te8GtPmLh38SyMnZ9iLxDDbNL35e8OPW-0-04be15e3339aaeafc93008d5ecc208f1)
43.设X服从参数λ=1的指数分布,求的概率密度fY(y)及Z=X 2的概率密度fZ(z).
解 在[0, +∞)上单调,x=y2(0≤y<+∞),
.根据题意有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0008.jpg?sign=1738982566-lFK3DmSmzLBN6dArrr0AHo1K3GMgFEwT-0-e3b7ca47be95c3c92fb91e62f64436c8)
因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0009.jpg?sign=1738982566-jYMnMpKolTOsG9mysO70gSTAa2RQT761-0-fd54dbb5aeff6bb577b406810802739f)
z=x2在[0, +∞)上单调 ,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0011.jpg?sign=1738982566-oUUI5P4EbDELD9Z7tKMJKcBpMSUMEykc-0-8bf951d62bf1ea604bce30b6eac4d8d4)
44.随机变量X~f(x),当x≥0时 ,分别计算随机变量Y与Z的概率密度fY(y)及fZ(z).
解 由于y=arctanx是单调函数,其反函数是 在
内不恒为零,因此,当
时,有
在x>0时也是x的单调函数,其反函数为
,因此当z>0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0016.jpg?sign=1738982566-cRNyUUIAfyrUXO6ZhsYT54ooEi38qJJJ-0-540f57b246c2a171951fba18592cad70)
即Y服从区间 上的均匀分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0020.jpg?sign=1738982566-YqFfw4NXTRzcTyQHZzGmWSQzTv82DJmC-0-1542894f8966058c93b5ad5998c0fdd1)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0001.jpg?sign=1738982566-f7XFiTITKNIYc4gzPrVDclZNit0sx9Il-0-8295ddaf5bed7f3fb74729b3d53d1b4d)
即与X同分布.
45.一个质点在半径为R、圆心在原点的圆的上半圆周上随机游动.求该质点横坐标X的概率密度fX(x).
解 如图2.1所示,设质点在圆周位置为M,弧的长记为L,显然L是一个连续型随机变量,L服从[0, πR]上的均匀分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0004.jpg?sign=1738982566-kjo9ihb4dkMrkcwi3n5qj4yg80ssz9F7-0-6eab51284b1a9174a50c4d494385d100)
M点的横坐标X也是一个随机变量,它是弧长L的函数,且
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0006.jpg?sign=1738982566-1jZaMUM4QTULRMgqJ7gSHvhzW7PvVUhq-0-62c22d3fe172bc09b4b08b1b060fb44c)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0005.jpg?sign=1738982566-44XQsyTLWfTvHUaEFAVDIb4gqufTMB9w-0-6aa3949bd9a12a42651db1fa004d2f7b)
图 2.1
函数x=Rcos(l/R)是l的单调函数(0<l<πR),其反函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0007.jpg?sign=1738982566-2SPTK8o32pf07BtRjYaUSccXF1ZA6a4H-0-224b642d6bdf1f916a5d4d9f371075b8)
当-R<x<R时,l'x≠0,此时有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0008.jpg?sign=1738982566-sSq0hCLOjB0BmWKH9s5IgDa4io6ogQ0C-0-b8af394de04934ad677baf3cc6bfbbf0)
当x≤-R或x≥R时,fX(x)=0.
46.设X~N(3,4),求:
(1)P{X≤2.5}; (2)P{X>1.3}; (3)P{1≤X≤3.5};
(4)P{|X|>2.8}; (5)P{|X|<1.6}; (6)P{X-2>5}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0009.jpg?sign=1738982566-4ktu8owjQVIjkD7FFqdhgJc9AavjNezy-0-f35b7147421a5743d25f27f5deac9c28)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0001.jpg?sign=1738982566-9ZIJi3uXDL6nTkSNg8cXUMPLeS6Zoczr-0-a3f208f341b1c62b19cc006bc50884f5)
47.随机变量X~N(μ, σ2),若P{X<9}=0.975, P{X<2}=0.062,试计算μ和σ2的值并求P{X>6}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0002.jpg?sign=1738982566-f4FtccKxQCAz78h4MNjGsU1p3YQLLhVM-0-f2ae9bbbd4b8bd3103c649317709cbeb)
查表得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0003.jpg?sign=1738982566-u0uoPuAR4BavTU8NEDbyvDfpfSrsbFHR-0-b505ee3b4921705782fc1dc8e67c5d93)
解关于μ和σ的方程组,得
μ=5.08,σ=2.
故
P{X>6}=1-P{X≤6}=1-Φ(0.46)=0.328.
48.已知随机变量X~N(10,22), P{|X-10|<c}=0.95, P{X<d}=0.023,试确定c和d的值.
解 查表得
.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0006.jpg?sign=1738982566-HDrO8lTr4Q6WA7dVRHYaCYW99BvyVyNc-0-4c675c78379ebbaa8d711a26e4567829)
查表得 .
49.假定随机变量X服从正态分布N(μ, σ2),确定下列各概率等式中a的数值:
(1)P{μ-aσ<X<μ+aσ}=0.9;
(2)P{μ-aσ<X<μ+aσ}=0.95;
(3)P{μ-aσ<X<μ+aσ}=0.99.
解
(1)2Φ(a)-1=0.9, Φ(a)=0.95, a=1.64;
(2)2Φ(a)-1=0.95, Φ(a)=0.975, a=1.96;
(3)2Φ(a)-1=0.99, Φ(a)=0.995, a=2.58.
50.设X~N(160, σ2),如要求X落在区间(120,200)内的概率不小于0.8,则应允许σ最大为多少?
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0001.jpg?sign=1738982566-g8hjohShuuQNJfSAfS1PHzEVaRZIdsFw-0-746e79c682df64a2fbf871ffd4a87674)
查表得Φ(1.28)≈0.9,于是可得.故σ最大约为31.
51.设一节电池使用寿命X~N(300,352),求:
(1)使用250h后仍有电的概率;
(2)满足关系式P{|X-300|<d}=0.9的数值d;
(3)满足关系式P{X>c}=P{X<c}的数值c.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0003.jpg?sign=1738982566-wFxnLpYmYUIJ6q4aeGjm4Ehb8utbCVLd-0-bb6576725984c3caf03c72d88acc966b)
52.设某班有40名同学,期末考试成绩X~N(375,81),假设按成绩评定奖学金,一等奖学金评4人,二等奖学金8人,问至少得多少分才能得到一、二等奖学金?
解 假设分别至少得分为a和b,才能得到一、二等奖学金.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0004.jpg?sign=1738982566-YtlX4KZKQQF0g7phwzR3bNKYys3kGvHy-0-82b5b3796168f4b5cf0b08e5e9d9d534)
(B)
1.设随机变量X的概率密度为f(x),且f(-x)=f(x).F(x)是X的分布函数,则对任意实数a,有( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0005.jpg?sign=1738982566-oAiDuW9cmB9Akwrgdbu0o2jHqG5xawZZ-0-921d721340a11248ef23460d28b0a59b)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0006.jpg?sign=1738982566-AQMOMcmlnvm6eFaW1bhDMKibVzBs1EDN-0-5a0c3492dcbe8757e2a7916d41c064ed)
C.F(-a)=F(a);
D.F(-a)=2F(a)-1.
解 ,
由于
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0001.jpg?sign=1738982566-vAteiSFniPuLOq3pYbDDebeUOTpr0lnG-0-a429a8ed6503551ac4ae38312e37366a)
所以
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0002.jpg?sign=1738982566-v3Z42rWpCTNsZ4mxtXqardIhKLDVJkQM-0-2a22fd330b96a22a16f4149eb23ebb93)
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0003.jpg?sign=1738982566-I9ovgZCepXP50pFw4pVBBuRY1g77Hcwq-0-b21e5ca65a84cf032289a34a24dcd079)
所以有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0004.jpg?sign=1738982566-gvK4KeGMshn0BwQCVFZmkpUR0O0NYEEJ-0-c4ad8348544c22aa721f91305b98fb5a)
B为正确答案.
2.设F1(x)与F(x2)分别为随机变量X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,a, b的值应取( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0005.jpg?sign=1738982566-y3MntcpqExXglTnPO1VZikrDJYyMcSw8-0-cccb5bbf7e1bc0a79ccf619db1d0f1a9)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0006.jpg?sign=1738982566-HFSql2m1BQrh1r34GXiSfTeLnrcljVI3-0-3afffc7ca468a361522d0032421764d6)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0007.jpg?sign=1738982566-9t96C9ArsPzOzJLZnQmJ90lULVoRcGnX-0-c8b6149cf2d2b15516d40e26a62d8a68)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0008.jpg?sign=1738982566-KWpoi10H6FeCm2XorzdXX22Qugb6SF3p-0-a8c3d14c4f29cb758ba403cc18f35ec8)
解 由分布函数的性质,应有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0009.jpg?sign=1738982566-Z8OLssaFJtEIlwAuIipFM6lyMmsU7PGh-0-e8600c4db151eac84c15794f2714db02)
所以A为正确答案.
3.设随机变量X服从正态分布N(μ, σ2),则随σ的增大,概率P{|X-μ|<σ}( ).
A.单调增大;
B.单调减小;
C.保持不变;
D.增减不定.
解 由正态分布的标准化变换得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0010.jpg?sign=1738982566-7tJn2sr9XYOgX9QZZikTzf1QQrDLWmas-0-846921c5b9418f9b239895a4f8dabd4e)
所以概率P{|X-μ|<σ}的大小与σ无关.C正确.
4.设随机变量X服从正态分布N(μ1, θ21),随机变量Y服从正态分布N(μ2, θ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有( ).
A.θ1<θ2;
B.θ1>θ2;
C.μ1<μ2;
D.μ1>μ2.
解 因为θi>0(i=1,2),由正态分布的标准化变换有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0011.jpg?sign=1738982566-wbEvoabkBOhmWSCkwGRTtaTZthi474mS-0-89f736d90ee57ec19c96cc6c9dae61c5)
所以A正确.
5.从数1,2,3,4中任取一个数,记为X,再从1,2, …, X中任取一个数,记为Y,求P{Y=2}.
解 显然,随机变量X能取1,2,3,4这4个值,由于事件{X=1}, {X=2}, {X=3},{X=4}构成完备事件组,且,则有条件概率
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0002.jpg?sign=1738982566-62eKCoQ1Bt4EvQpOl953ciE8uXqgqGMt-0-90d20094febe295e178a4a829f7cf1fb)
所以由全概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0003.jpg?sign=1738982566-Lkb5pd3eYr6KVdHFhA9IC9BtxgfjaU9q-0-cced8eb6cf43bbd776c33d336edbca06)
6.设在一段时间内进入某一商店的顾客人数X服从参数为λ的泊松分布,每个顾客购买某种商品的概率为p,并且每个顾客是否购买该种商品相互独立,求进入商店的顾客购买该种商品的人数Y的概率分布.
解 由题意得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0004.jpg?sign=1738982566-RT1L25qEan5kKcqCHBjc9VAbC6kappYj-0-5d185ffa072881a7ddee10e428f3a982)
设购买某种物品的人数为Y,在进入商店的人数X=m的条件下,随机变量Y的条件分布为二项分布B(m, p),即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0005.jpg?sign=1738982566-MexBbNMeqkXXCN3Cjik1not4KaQz7saJ-0-34c4bbe81b9194ca82393269b76720b3)
由全概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0006.jpg?sign=1738982566-Z0gLvspiXnwksbNyv95HCyEYc9XptQ3L-0-844d04999dcdfd034f9ac2384ce903d2)
7.设X是只取自然数为值的离散随机变量.若X的分布具有无记忆性,即对任意自然数n与m,都有
P{X>n+m|X>m}=P{X>n},
则X的分布一定是几何分布.
解 由无记忆性知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0007.jpg?sign=1738982566-E3bbFOfXbThb0xVo2cAL87s6ld5x7CjR-0-62d49ee66bfbcc6b97e7d7c17a4c774f)
或
P{X>n+m}=P{X>n}·P{X>m}.
若把n换成n-1仍有
P{X>n+m-1}=P{X>n-1}·P{X>m}.
上两式相减可得
P{X=n+m}=P{X=n}·P{X>m}.
若取n=m=1,并设P{X=1}=p,则有
P{X=2}=p(1-p).
若取n=2, m=1,可得
P{X=3}=P{X=2}·P{X>1}=p(1-p)2.
若令P{X=k}=p(1-p)k-1,则由归纳法可推得
P{X=k+1}=P{X=k}·P{X>1}=p(1-p)k, k=0,1, …,
这表明X的分布就是几何分布.
8.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情况下,再无故障工作8小时的概率Q.
解 发生故障的次数N(t)是一个随机变量,且N(t)服从参数为λt的泊松分布,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0001.jpg?sign=1738982566-P7Xg8dbmGjoiU6g992m2zidie5UPwxTO-0-052568a988c33b579bddc1882e42d9a8)
(1)相继两次故障之间时间间隔T是非负连续型随机变量,所以,当t<0时,分布函数为F(t)=P{T≤t}=0;当t≥0时,{T>t}与{N(t)=0}等价,于是有
F(t)=P{T≤t}=1-P{T>t}=1-P{N(t)=0}=1-e-λt,
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0002.jpg?sign=1738982566-VBqWrFE6RSWqfR3h2hmoy5vyBaDuhG4C-0-f766cfb2bea7a111233a6e67d0b81cdc)
因此,随机变量T服从参数为λ的指数分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0003.jpg?sign=1738982566-VpFhoyy2z2mZzX2bTTSXLRekzHS8ypW3-0-25ad2dbb2e1f44a46f11c8f8c5512bb0)
9.设随机变量X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0004.jpg?sign=1738982566-yKtuvtzPrEzRqbDKRYGRSXk7g50n4mGy-0-e6ed65001a60ede65718bcdda07765b7)
F(x)是x的分布函数,求随机变量Y=F(X)的分布函数G(y).
解 对X的概率密度积分得X的分布函数
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0005.jpg?sign=1738982566-OtQ3Jt3QrlqoGDmpzORagPm87hHUhWL7-0-c3f29a91ec2ce76921e15b4032b94178)
当y≤0时,有
G(y)=P{Y≤y}=P{F(X)≤y}=0,
当y≥1时,有
G(y)=P{Y≤y}=P{F(X)≤y}=1,
当0<y<1时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0001.jpg?sign=1738982566-cAemsPPoDSYx1jjDek92PDnGV5BuPZzo-0-ad27b41fdf6e86baf1870a36335f7503)
或
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0002.jpg?sign=1738982566-mD1nRqhp3evn8yRa8m9Yrxp3DXq0v3Cc-0-57d411048a34ad3ca0c6caf6bfab50f5)
于是,Y=F(X)的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0003.jpg?sign=1738982566-aoY4Som1HxvKw9In5mEsbMg0xlIA4z0m-0-f6362557abe4192020834773ae9d2c6a)
即Y=F(X)服从区间[0,1]上的均匀分布.
10.假设随机变量X服从参数为λ的指数分布,求随机变量Y=min{X, k}的分布函数(k为一常数,k>0).
解 由题设条件
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0004.jpg?sign=1738982566-KOIBmXHWeoEzxSQpulC9uo7JURfJ0g2k-0-da02207ae3f28187b78f6baad74ffcc8)
所以
FY(y)=P{Y≤y}=P{m in{X, k}≤y}.
当y<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0005.jpg?sign=1738982566-ykBXciAksyincob016sqgoDLccZSXlk7-0-92fa98eaf3b228e86fc9ecc53cb70e50)
当0≤y<k时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0006.jpg?sign=1738982566-VvPRZsb4FDSfmdNvm3ARqKq3tvB3kcla-0-e1c1abc223b7f50dc3f630216f55b9ba)
当y≥k时,有
FY(y)=P{Y≤y}=P{m in{X, k}≤y}=1.
所以Y的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0007.jpg?sign=1738982566-xqjaIWVJCEUzxtN1Y3XPJ0uMcoXiThVj-0-81b7b8bbe6528645b7f2975d09f5f042)