
会员
人形机器人(原书第2版)
更新时间:2024-10-14 16:27:04
最新章节:封底开会员,本书免费读 >
本书结合人形机器人研究中各类先进方法,系统地介绍了驱动人形机器人运动的基础知识、推导过程以及应用案例,阐述了人形机器人的运动学、动力学表示方法,解释了ZMP的概念及其与地面反作用力的关系,描述了人形机器人双足行走行为的生成和控制方法,并拓展了其他多种动作的实现方法,最后介绍了动力学建模、仿真和高效动力学的计算方法。
品牌:机械工业出版社
译者:冷春涛等
上架时间:2024-07-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
最新上架
- 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字 - 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
AI提示工程实战:从零开始利用提示工程学习应用大语言模型
本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。计算机14万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字 - 会员
ChatGPT漫谈
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模计算机10.8万字 - 会员
AI原生应用开发:提示工程原理与实战
本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书计算机18.2万字 - 会员
AIGC:让生成式AI成为自己的外脑
《AIGC:让生成式AI成为自己的外脑》针对近期较为火热的AIGC技术及其相关话题,介绍AIGC的技术原理、专业知识和应用。全书共分为九章。第一章介绍AIGC技术的基本概念和发展历程;第二、三章介绍AIGC的基础技术栈和拓展技术栈;第四、五章分别讨论了AIGC技术在文本生成和图像生成两个领域的现状和前景;第六章列举了目前较为热门的AIGC技术应用;第七章描述了AIGC的上、中、下游产业链及未来前景计算机12.8万字 - 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
设计深度学习系统
本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一计算机18.1万字